
Modeling and Verification of Real-Time Software

Using Extended Linear Hybrid Automata

Steve Vestal
steve.vestal@honeywell.com
Honeywell Technology Center
Minneapolis, MN 55418∗

Abstract
Linear hybrid automata are finite state automata

augmented with real-valued variables. Transitions be-
tween discrete states may be conditional on the val-
ues of these variables and may assign new values to
variables. These variables can be used to model real
time and accumulated task compute time as well as
program variables. Although it is possible to encode
preemptive fixed priority scheduling using existing lin-
ear hybrid automata models, we found it more general
and efficient to extend the model slightly to include
resource allocation and scheduling semantics. Under
reasonable pragmatic restrictions for this problem do-
main, the reachability problem is decidable. The proof
of this establishes an equivalence between dense time
and discrete time models given these restrictions. We
next developed a new reachability algorithm that sig-
nificantly increased the size of problem we could ana-
lyze, based on benchmarking exercises we carried out
using randomly generated real-time uniprocessor work-
loads. Finally, we assessed the practical applicabil-
ity of these new methods by generating and analyz-
ing hybrid automata models for the core scheduling
modules of an existing real-time executive. This ex-
ercise demonstrated the applicability of the technology
to real-world problems, detecting several errors in the
executive code in the process. We discuss some of the
strengths and limitations of these methods and possi-
ble future developments that might address some of the
limitations.

1 Introduction
The first goal of the work described in this pa-

per was to analyze the schedulability of real-time sys-
tems that cannot be easily modeled using traditional
scheduling theory. Traditional real-time task mod-
els cannot easily handle variability and uncertainty in
clock and computation and communication times, syn-
chronizations (rendezvous) between tasks, remote pro-
cedure calls, anomalous scheduling in distributed sys-
tems, dynamic reconfiguration and reallocation, end-
to-end deadlines, and timeouts and other error han-
dling behaviors.

∗This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008.

The second goal was to verify software implemen-
tations of systems. Task schedulers and communica-
tions protocols are reactive components that respond
to events like interrupts, service calls, task comple-
tions, error detections, etc. We would like to model
important implementation details such as control logic
and data variables in the code. We would like the map-
ping between model and code to be clear and simple
to better assure that the model really does describe
the implementation.

Discrete event concurrent process models are widely
used to model control flow within and interactions be-
tween concurrent activities. Classical discrete event
concurrent process models do not deal with resource
allocation and scheduling or data variables, which lim-
its their usefulness for real-time systems and makes
it awkward to model some implementation details.
Classical preemptive scheduling models do not deal
well with complex task sequencing and interaction,
which limits their usefulness for describing distributed
systems and implementation details. Discrete time
models have been developed for real-time schedul-
ing of concurrent processes[23, 13, 11, 31], and some
work has been done on dense time real-time pro-
cess algebras[10, 14]. This paper describes the use of
dense time linear hybrid automata models to perform
schedulability analysis and to verify implementation
code.

The first problem we faced was the modeling of re-
source allocation and scheduling behaviors using hy-
brid automata. The applicability in principle of hy-
brid automata to the scheduling problem was already
known[4]. We wanted a model that would admit
a variety of complex allocation as well as schedul-
ing algorithms, e.g. load balancing, priority inheri-
tance. We wanted to be able to change the allocation
and scheduling algorithms easily without changing the
models of the real-time tasks themselves. We wanted
to minimize the number of states and variables added
to model allocation and scheduling. We found it most
general and efficient to extend the definition of hybrid
automata to include resource allocation and schedul-
ing semantics rather than try to model the scheduling
function as a hybrid automaton.

We use integration variables to record the accumu-
lated compute time of tasks in preemptively sched-

uled systems. Allowing integration variables is known
to make the reachability problem undecidable[22, 17].
We were curious about whether analysis of real-time
allocation and scheduling in distributed heterogeneous
systems is itself a fundamentally difficult problem, or
if general linear hybrid automata are more powerful
than is really necessary for this problem. We were
able to show that the reachability problem becomes
decidable when some simple pragmatic restrictions are
placed on the model.
The second problem we faced was the computa-

tional difficulty of performing a reachability analysis.
We began our work using an existing linear hybrid
automata analysis tool, HyTech[18], but found our-
selves limited to very small models. We developed
and implemented a new reachability method that was
significantly faster, more numerically robust, and used
less memory. However, our prototype tool allows only
constant rates (not rate ranges) and does not provide
parametric analysis.
Using this new reachability procedure we were able

to accomplish one of our goals: the modeling and ver-
ification of a piece of real-time software. We devel-
oped a hybrid automata model for that portion of the
MetaH real-time executive that implements unipro-
cessor task scheduling, time partitioning and error
handling[1]. We successfully analyzed these models,
uncovering several implementation defects in the pro-
cess. There are limits on the degree of assurance that
can be provided, but in our judgement the approach
may be significantly more thorough and significantly
less expensive that traditional testing methods. This
result suggests the technology has reached the thresh-
old of practical utility for the verification of small
amounts of software of a particular type.
However, we do not believe existing reachability

methods are adequate yet for schedulability analysis
of real systems. In our judgement, we would need to
be able to analyze systems having a few dozen tasks
on a few processors in order for the technology to be-
gin finding use in this area. We discuss approaches
that might lead to such improvements.

2 Resourceful Hybrid Automata
A hybrid automaton is a finite state machine aug-

mented with a set of real-valued variables and a set
of propositions about the values of those variables.
Figure 1 shows an example of a hybrid automaton
whose discrete states are preempted, executing and
waiting; and whose real-valued variables are c and t.
Waiting is marked as the initial discrete state, and c
and t are assumed to be initially zero.
Each of the discrete states has an associated set of

differential equations, e.g. ċ = 0 and ṫ = 1 for the
discrete state preempted. While the automaton is in
a discrete state, the continuous variables change at the
rates specified for that state.
Edges may be labeled with guards involving con-

tinuous variables, and a discrete transition can only
occur when the values of the continuous variables sat-
isfy the guard. When a discrete transition does occur,
designated continuous variables can be set to desig-
nated values as specified by assignments labeling that

edge.
A discrete state may also be annotated with an

invariant constraint to assure progress. Some dis-
crete transition must be taken from a state before
that state’s invariant becomes false. For example, the
hybrid automaton in Figure 1 must transition out of
state computing before the value of c exceeds 100.
The hybrid automata of interest to us are called

linear hybrid automata because the invariants, guards
and assignments are all expressed as sets of linear con-
straints. The differential equations governing the con-
tinuous dynamics in a particular discrete state are re-
stricted to the form ẋ ∈ [l, u] where [l, u] is a fixed
constant interval (our current prototype tool is fur-
ther restricted to a singleton rate, ẋ = [l, l]).
We want to verify assertions about the behavior of

a hybrid automaton. Although it is possible in general
to check temporal logic assertions[4], we make do by
annotating discrete states and edges with sets of linear
constraints labeled as assertions. These constraints
must be true whenever the system is in a discrete state
or whenever a transition occurs over an edge.
The cross-product construction used to compose

concurrent finite state processes can be extended in
a fairly straight-forward way to systems of hybrid au-
tomata. The invariant and assertion associated with a
discrete system state are the conjunction of the invari-
ants and assertions of the individual discrete states.
The guards, assertions and assignments of synchro-
nized transitions are the conjunction and union of the
guards, assertions and assignments of the individual
discrete co-edges. If there is a conflict between the rate
assignments of individual discrete states, or a conflict
between the variable assignments of co-edges, then
the system is considered ill-formed. Note that con-
current hybrid automata may interact through shared
real-valued variables as well as by synchronizing their
transitions over co-edges.
The application of interest in this paper is the anal-

ysis and verification of real-time systems. Figure 1
shows an example of a simple hybrid automata model
for a preemptively scheduled, periodically dispatched
task. A task is initially waiting for dispatch but may
at various times also be executing or preempted. The
variable t is used as a timer to control dispatching
and to measure deadlines. The variable t is set to 0
at each dispatch (each transition out of the waiting
state), and a subsequent dispatch will occur when t
reaches 1000. The assertion t ≤ 750 each time a task
transitions from executing to waiting (each time a task
completes) models a task deadline of 750 time units.
The variable c records accumulated compute time, it
is reset at each dispatch and increases only when the
task is in the computing state. The invariant c ≤ 100
in the computing state means the task must complete
before it receives more than 100 time units of processor
service, the guard c ≥ 75 on the completion transition
means the task may complete after it has received 75
time units of processor service (i.e. the task compute
time is uncertain and/or variable but always falls in
the interval [75, 100]).
In this example the edge guards selected and

unselected represent scheduling decisions made at

executingpreempted

t 1000<_

t := 0
c := 0

c 100<_
waiting

c = 1
.
t = 1
.

if c 75>_

c = 0
.
t = 1
.

if unselected

if selected

if t = 1000
and selected

t := 0
c := 0 if t = 1000

and unselected

c = 0.
t = 1
.

 t 750<_assert

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

scheduling events (called scheduling points in the real-
time literature). These decisions depend on the avail-
able resources (processors, busses, etc.) being shared
by the tasks. There are several approaches to intro-
duce scheduling semantics into a model having several
concurrent tasks.
Scheduling can be introduced using concepts taken

from the theory of discrete event control[26]. A con-
current scheduler automaton can be added to the sys-
tem of tasks. The scheduling points in the task set
become synchronization events at which the scheduler
automaton can observe the system state and make
control decisions. Many high-level concepts from dis-
crete event control theory carry over into this domain,
such as the importance of decentralized control and
limited observability in distributed systems.
Discrete event control theory provides an approach

to synthesize optimal controllers, which in this do-
main translates to the automatic construction of
application-specific scheduling algorithms. However,
classical discrete event control theory does not deal
with time. The theory has been extended to synthesize
nonpreemptive schedulers for timed automata[9, 2],
but this excludes preemptively scheduled systems. It
is possible to develop scheduling automata by hand
using traditional real-time scheduling policies such as
preemptive fixed priority. Some examples have been
given in the literature, where each distinct ready queue
state is modeled as a distinct discrete state of the
scheduler automaton[4]. This would allow a very large
class of scheduling algorithms to be modeled, but the
size of the scheduler automaton may grow combinato-
rially with the number of tasks.
It is possible to model preemptive fixed priority

scheduling by encoding the ready queue in a variable
rather than in a set of discrete states. A queue vari-
able is introduced that will take on only integer values.
At each transition where a task i is dispatched, 2i is
added to this queue variable; at each transition where
task i completes, 2i is subtracted. The queue vari-
able can be interpreted as a bit vector whose ith bit is
set whenever task i is ready to compute. There is no

separate scheduler automaton, the scheduling protocol
is modeled using additional guards and states in the
task automata. This is the approach we took when
we started our work using HyTech. This encodes a
specific scheduling protocol into each task model, and
adds additional discrete states, variables and guards
to the model. It is awkward to model any scheduling
policy other than simple preemptive fixed priority.
In the end, we found it simpler and more general

to define a slightly extended linear hybrid automata
model that includes resource scheduling semantics[28].
The discrete state composition of the task set is per-
formed before any scheduling decisions are made. A
scheduling function is then applied to the composed
system discrete state to determine the variable rates
to be used for that system state. In essence, the com-
posed system discrete state is the ready queue to which
the scheduling function is applied, very much analo-
gous to the way run-time scheduling algorithms are
applied in an actual real-time system. It is not nec-
essary to have different discrete states for preempted
and computing, since this information is now captured
in the variable rates. It is not necessary to model a
scheduling algorithm as a finite state control automa-
ton added to the system, it is not necessary to encode a
specific scheduling semantics into the task automata.
One simply codes up a scheduling algorithm in the
usual way and links it with the rest of the reachabil-
ity analysis code. This approach significantly reduces
the number of discrete states in the model (from 3t

for our HyTech models to 2t for our extended models,
where t is the number of tasks). This also simplifies
the modeling of the desired scheduling discipline. The
details of this model and its semantics are recorded
elsewhere[28].

3 Decideability
Most traditional real-time schedulability problems

are solvable in polynomial time or are NP-complete.
However, hybrid automata models that allow multiple
rates and integration variables are undecideable[22,
17]. The hybrid automata models we are using are
much more powerful than traditional allocation and

scheduling models, and most existing tasking and
scheduling models can be viewed as special cases of
the more general hybrid automata model. This raises
the question of whether the schedulability problem for
complex interacting tasks that are dynamically allo-
cated in distributed heterogeneous systems is in fact
undecideable, or whether models of such systems are
decideable special cases of the more powerful linear
hybrid automata models.
The undecideability of hybrid automata reachabil-

ity analysis was proved by reducing the reachability
problem for two-counter machines, which is known to
be undecideable, to the reachability problem for hy-
brid automata[22, 17]. The construction used in the
proof is fairly straightforward in our slightly extended
model and can be accomplished using a single pro-
cessor. However, a pragmatic real-time system de-
signer would reject the theoretical construction as a
bad design because it relies in places on exact equal-
ity comparisons between timers and accumulated com-
pute times. In a real system, these would be regarded
as race conditions or ill-defined behaviors. The prob-
lem becomes decideable given a few simple practical
restrictions, which are captured in the following theo-
rem.

Theorem 1 The reachability problem is decideable
for resourceful linear hybrid automata if the following
conditions hold.

• The set of possible outputs of the scheduling func-
tion for each possible system discrete state is finite
and enumerable.

• For every task activity integrator variable, the
rate interval remains fixed between resets of that
integrator (i.e. the scheduler does not dynamically
reallocate any task activity in mid-execution to a
new resource having a different rate for that ac-
tivity).

• For every task activity integrator variable, every
edge guard is a set of rectangular constraints of
the form x ∈ [l, u], and either the edge guard has
a non-singular interval (x ∈ [l, u] with l < u)
or else the rate interval for ẋ is non-singular (i.e.
system behavior does not depend on exact equality
comparisons with exact drift-free clocks or execu-
tion rates).

• However, we allow as a special exception task ac-
tivity integrator variables with singular rate inter-
val and singular rectangular edge guards, provid-
ing the integrator variable is only reset or stopped
or restarted at a transition having at least one
edge guard y ∈ [m,m] with [m,m] and ẏ singu-
lar (y may but need not be x), and for every such
singular constraint on that edge ẋ = kẏ for some
positive integer k (i.e. some types of noninteract-
ing or harmonically interacting behaviors may be
modeled exactly).

This result should not be surprising. The ability
to test for exact equality is known to add theoretical

power to dense time temporal logics[3], and similar
restrictions are known to make certain other hybrid
automata models decideable[25]. The proof of this
theorem, which we provide elsewhere[28], is by reduc-
tion to a discrete time finite state automaton.

4 Reachability Analysis
A state of a linear hybrid automaton consists of a

discrete part, the discrete state at some time t; and
a continuous part, the real values of the variables at
time t. It turns out that, although this state space
is uncountably infinite, the reachable state space for
a given linear hybrid automaton is a subset of the
cross-product of the discrete states with a recursively
enumerable set of convex polyhedra in �n (where n is
the number of variables)[4]. A region of a linear hy-
brid automaton is a pair consisting of a discrete state
and a convex polyhedron, where convex polyhedra can
be represented using a finite set of linear constraints.
Model checking consists of enumerating the reachable
regions for a given linear hybrid automaton and check-
ing to see if they satisfy the assertions.
Figure 2 depicts the basic sequence of operations

that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the
variables), computes the set of values the variables
might take on in that discrete state as time passes;
and computes a set of regions reachable by subsequent
discrete transitions.
The first step is the computation of the time suc-

cessor polyhedron from the starting polyhedron (of-
ten called the post operation). For each point in the
starting polyhedron, the time successor of that point
is a line segment beginning at that point whose slope
is defined by the variable rates specified for the dis-
crete state. This is the set of variable values that
can be reached from a starting point by allowing some
amount of time to pass. The time successor of the
starting polyhedron is the union of the time successor
lines for all points in the starting polyhedron. A ba-
sic result of linear hybrid automata theory is that the
time successor of any convex polyhedron is itself a con-
vex polyhedron (which in general will be unbounded
in certain directions)[4].
The second step is the intersection of the time suc-

cessor polyhedron with the invariant constraint asso-
ciated with the discrete state. Polyhedra are easily
intersected by taking the union of the set of linear
constraints that define the two polyhedra. This is the
time successor region that is feasible given the invari-
ant specified for the discrete state.
The remaining steps are used to compute new re-

gions reachable from this feasible time successor re-
gion by some transition over an edge. For each edge
out of the current discrete state, the associated guard
is first intersected with the feasible time successor re-
gion. This polyhedron, if nonempty, defines the set
of all variable values that might exist whenever the
discrete transition could occur. Any variable assign-
ments associated with the edge must now be applied
to this polyhedron. This is done in two phases. First,
a variable to be assigned a new value x := l is uncon-
strained (often called the free operation). This oper-

S0 S1
S0

assign X := [4,5]2

S1

S0

invariant constraint

S1 S0

guard

S1

S0 S1 S0

time successor polyhedron

S1

Step 1: Time Successor

Step 2: Intersection with Invariant Step 3: Intersection with Guard

Step 4: Unconstrain Assigned Variable Step 5: Intersect with Assignment Constraint

starting
polyhedron

starting
discrete state

if Guard then X := [4,5]2 if Guard then X := [4,5]2

if Guard then X := [4,5]
2

if Guard then X := [4,5]
2

if Guard then X := [4,5]
2if Guard then X := [4,5]

2

unconstrain X
2

after t
2

after t1

Figure 2: Hybrid Automata Reach Forward Operations

ation leaves unchanged the relationships between all
other variables, i.e. the polyhedron is projected onto
the subspace �n−1 of the remaining variables. This
result is then intersected with the constraint x = l.
This polyhedron, together with the discrete state to
which the edge goes, is a new region for which the

above steps may be repeated. In general a set of as-
signments whose right-hand sides are linear formula
are allowed, with some restrictions. The variables to
be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear
constraints in some order. With care, fairly complex

sequences of assignments to program variables can be
modeled on a single edge[30].
The overall method begins at the initial region of

a hybrid automaton. The operations described above
are applied to enumerate feasible time successor re-
gions and the new regions reachable from these via
discrete transitions. As new regions are enumerated,
they must be checked to see if they have been visited
before (otherwise the method will not terminate even
when there are a finite number of regions). This is
done by comparing the discrete states of regions for
equality, and by checking to see if the new polyhedron
is contained in the polyhedron of a previously visited
region.
The earliest reachability tool of which we are aware,

HyTech, represented polyhedra as finite sets of linear
constraints[4]. Operations on polyhedra used quan-
tifier elimination, a method to manipulate and make
decisions about systems of linear constraints in which
some of the variables are existentially quantified. Sub-
sequent tools, Polka and a later version of HyTech,
used a pair of representations: the traditional system
of linear constraints together with polyhedra gener-
ators consisting of sets of vertices and rays[16, 18].
Different operations required during reachability are
more convenient in the different representations, and
methods are used to convert between the two as
needed.
Both of these methods are subject to the theoreti-

cal risk that some polyhedra operations may require a
combinatorial amount of time. Another potential per-
formance problem occurs when the reachable discrete
state space is completely enumerated first followed by
an enumeration of the polyhedra. This might result
in enumerating discrete states that are actually not
reachable due to edge guards involving the continuous
variables. Finally, in our experiments we found that a
significant fraction of a set of benchmark schedulabil-
ity problems we tried to solve using HyTech resulted
in numeric overflow errors.
We developed a new set of algorithms for the poly-

hedra operations used during reachability analysis and
implemented a prototype on-the-fly reachability anal-
ysis library. Our prototype operates on lists of linear
constraints of the form l ≤ e ≤ u where l and u are
fixed constant integer bounds and e = c1x1+c2x2+ ...
is a linear formula with fixed constant integer coeffi-
cients. Our current algorithms restrict variable rates
to be fixed scalar constants, ẋ = i rather than the
more general ẋ ∈ [l, u].
We convert a polyhedron P into Post(P, ẋ), the

time successor of P given a vector of variable rates
ẋ, by applying the two steps

1. Let each constraint li ≤ ei ≤ ui where ėi �= 0 be
written so that ėi > 0, which can be achieved by
multiplying the constraint by -1 if needed. For
each distinct pair of constraints

li ≤ ei ≤ ui
lj ≤ ej ≤ uj

where ėi > 0 and ėj > 0, add to the set the

constraint

ėjli − ėiuj ≤ ėjei − ėiej ≤ ėjui − ėilj

2. Replace each constraint l ≤ e ≤ u where ė > 0 by
l ≤ e ≤ ∞.

We compute Free(P, x), the result of unconstraining
variable x in polyhedron P , using the two steps

1. Let each constraint l ≤ e ≤ u in P where e has an
instance of x be written in the form l ≤ cx− e′ ≤
u, where e′ involves the remaining variables and
their coefficients and c > 0. For every distinct
pair of such constraints in P

li ≤ cix− ei ≤ ui
lj ≤ cjx− ej ≤ uj

combine the two in a way that cancels the x terms,
adding to Free(P, x) the constraint

cjli − ciuj ≤ ciej − cjei ≤ cjui − cilj

2. Each constraint l ≤ e ≤ u where e has no in-
stances of variable x is added to Free(P, x).

These algorithms might be viewed as general-
izations of the difference methods used for timed
automata[12, 8] and exhibit some similarity to
the pragmatic algorithm used earlier for quantifier
elimination[4]. Our prototype invokes a Simplex al-
gorithm as part of the operations to test for feasibility
and containment. We use a bounds tightening pro-
cedure to reduce the size of the constraint list after
certain operations and to rapidly detect most infeasi-
ble polyhedra. Simplex-based reduction and feasibil-
ity testing is only applied when the bounds tightening
procedure is ineffective. Details of our reachability
analysis methods and implementation and proofs of
correctness are documented elsewhere[29].
We benchmarked our prototype tool against

HyTech and Verus[11] (a discrete timed automata
reachability analysis tool that uses BDD techniques)
using randomly generated uniprocessor workloads con-
taining mixtures of periodic and aperiodic tasks. Fig-
ure 3 shows the percentage of problems that were
solved by each of the tools, together with the primary
reasons that solution was not achieved. Figure 4 com-
pares the time required for solution for problems that
were solved by all the tools using a logarithmic scale (a
point appears for both HyTech and our prototype only
for problems that were solved by both). We further
increased the size of model we could analyze by ap-
plying some results from traditional scheduling theory
to simplify the models, and by using a simple partial
order reduction technique, these results are reported
elsewhere[29].

5 Verifying the MetaH Executive
MetaH is an emerging SAE standard language for

specifying real-time fault-tolerant high assurance soft-
ware and hardware architectures[1, 24, 27]. Users

20%

40%

60%

80%

1 2 3 4 5 6 7 8

HVP HVP HVP HVP HVP HVP HVP HVP

solved

cpu > 1 hr

memory > 300M

numeric error

Verus Prototype

number of tasks in workload

other

HyTech

Figure 3: Percentage of Generated Problems That Were Solved

0.0625

0.25

1

4

16

64

256

1024

4096

0 1 2 3 4 5 6 7

so
lu

tio
n

tim
e

in
 s

ec
on

ds

number of tasks

HyTech average
Verus average

prototype average
HyTech

Verus
prototype

Figure 4: Solution Times for Problems That Were Solved

specify how software and hardware components are
combined to form an overall system architecture. This
specification includes information about one or more
configurations of tasks and message and event connec-
tions; and information about how these objects are
mapped onto a specified hardware architecture. The
specification includes information about timing behav-
iors and requirements, fault and error behaviors and
requirements, and partitioning and safety behaviors
and requirements.

Our current MetaH toolset, illustrated in Figure 5,
can generate and analyze formal models for schedula-

bility, reliability, and partition isolation. The toolset
can also configure an application-specific executive to
perform the specified task dispatching and schedul-
ing, message and event passing, changes between alter-
native configurations, etc. Unlike many conventional
systems that rely on a large number of run-time ser-
vice calls to configure a system by dynamically cre-
ating and linking to tasks, mailboxes, event channels,
timers, etc., our toolset builds most of this informa-
tion into an application-specific executive. There are
relatively few run-time service calls, and the effects of
these are tailored based on the specified application

hand-coded

source component
repository

HW/SW
binder

workspace

graphical
editor

textual
editor

automatically
generated

reengineered

load
image analysis results

reliability
modeler

reliability
analyzer

schedulability
modeler

schedulability
analyzer

application
builder

executive
configurer

partition isolation
modeler

partition isolation
analyzer

hybrid automata
modeler

reachability
analyzer

Figure 5: MetaH Toolset

architecture and requirements.

Our MetaH executive supports a reasonably com-
plex tasking model using preemptive fixed priority
scheduling theory[5, 6, 7]. Among the features rele-
vant to this study are period-enforced aperiodic tasks,
real-time semaphores, mechanisms for tasks to initial-
ize themselves and to recover from internal faults, and
the ability to enforce execution time limits on all these
features (time partitioning). Slack stealing in support
of aperiodic and incremental tasks is also supported,
but as we will mention later these were not modeled
or verified.

Figure 6 shows the high-level structure of the
MetaH executive. The core task scheduling operations
are implemented by module Threads, e.g. start, dis-
patch, complete. These operations implement tran-
sitions between the discrete task scheduling states,
e.g. dispatch may transition a task from the await-
ing dispatch state to the computing state. These op-
erations must take into account details such as the
task type, optional execution time enforcement, event
queueing, etc. Module Threads invokes operations
in module Time Slice, which encapsulates arithmetic
operations and tests on two execution time accumula-
tors maintained by the underlying RTOS and hard-
ware for each task: an accumulator that increases
while a task executes, and a time slice that decreases
while a task executes. Time Slice may set these vari-
ables to desired values using services provided through
the MetaH RTOS interface. If time slicing is en-
abled for a task, then a trap will be raised by the
underlying hardware and RTOS when the time slice
reaches zero. This trap is handled by one of the oper-
ations in Threads. Module Clock Handler is periodi-
cally invoked by the underlying system (it is the han-

dler for a periodic clock interrupt) and makes calls to
Threads to dispatch periodic tasks and start and stop
threads at mode changes. Modules Events, Modes
and Semaphores contain data tables and operations
to manage user-declared events, dynamic reconfigura-
tion, and semaphores.
We produced hybrid automata models for the

Threads and Time Slice modules, about 1800 lines
of code. We did not write a separate model using a
special modeling language, instead we inserted calls
to build the model into the executive code itself. For
example, in the code that implements the dispatch
operation there is logic to decide if a task can be
dispatched, assignments to change program variables,
and calls to set the time slice and execution time coun-
ters. Into this code we inserted a call to a modeling
procedure to create an edge between the correspond-
ing states of the linear hybrid automata model. The
guards for this edge are the conditional expressions
appearing in the code, and the assignments on this
edge are the assignments appearing in the code. This
provides a high degree of traceability between the im-
plementation and the model.
The generation of the hybrid automata models re-

sembled all-paths unit testing. We developed several
simple application specifications that included most
(but not all) of the tasking features. We wrote a test
driver that exercised all relevant paths in the core
scheduling modules. For each application specifica-
tion, the test driver thus triggered the generation of a
linear hybrid automata model of the possible behav-
iors of the core scheduling operations for a particular
combination of tasks and features.
The conditions we checked during reachability

analysis were that all deadlines were met whenever

POSIX or Ada95 or other kernel
MetaH RTOS interface

hardware

C
lo

ck
_H

an
dl

er Threads
Events

Modes

Semaphores

Time_Slice

Figure 6: MetaH Executive Structure

the schedulability analyzer said an application was
schedulable; no accessed variables were unconstrained
(undefined) and no invariants were violated on entry
to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appear-
ing in the code were modeled by edges annotated with
assert False.
We also collected information about which edges

were used by some transition during reachability anal-
ysis and compared this with all the possible edges that
might be created (all instances of calls inserted into
the code to create edges). This allowed us to insure
that all modeled portions of the code were covered by
at least one reachability analysis.
A total of 14 real-valued variables and 15 discrete

states were defined to model each task. No single task
model used all 14 variables and 15 states, different
task types with different specified options used differ-
ent combinations. Figure 7 shows the simplest lin-
ear hybrid automata model we generated, a periodic
task with period and deadline of 100000us, compute
time between 0 and 90000us, recovery time between
0 and 10000us. States are also annotated with pro-
cessor scheduling priorities, which are not shown here.
The variable rates were derived from the scheduling
priorities by the analysis tool, which used preemptive
fixed priority scheduling semantics for this study. Ta-
ble 1 summarizes the complete set of applications we
analyzed. A more detailed discussion of the modeling
methods and results is provided elsewhere[30].
We discovered nine defects in the course of our ver-

ification exercise. Four of these were tool defects, two
that could cause bad configuration data to be gener-
ated and two that could cause erroneously optimistic
schedulability models to be generated. Six of these
defects could cause errors only during the handling
of application faults and recoveries, three of these six
only in the presence of multiple near-coincident faults
and recoveries. In our judgement, of the nine defects
we found, one would almost certainly have been de-
tected by moderately thorough requirements testing,
while three would have been almost impossible to de-

tect by testing due to the multiple carefully timed
events required to produce erroneous behavior. The
other five may have been detected by thorough re-
quirements testing of fault and recovery features, pro-
viding the tester thought about possible execution
timelines and arranged for tasks to consume carefully
selected amounts of time between events.

There are a number of significant limitations on the
degree of assurance provided. In our initial exercise,
we chose not to model many behaviors that could have
been modeled in a fairly straight-forward way, e.g.
mode changes, inter-processor communication proto-
col, non-preemptable executive critical sections. In
some cases different behaviors and subsystems can be
modeled and analyzed almost independently, but it is
not clear at what point the reachability analysis will
become intractable as the extent of the model grows.
Some behaviors might be more difficult to model, e.g.
slack scheduling. The MetaH processor interface, un-
derlying RTOS and hardware are unlikely to be fully
model-able for a variety of practical and technical rea-
sons. The MetaH tools were not verified, only a few
specific generated modules and reports for a few ex-
ample applications. Although our approach provides
good traceability between code and model, there is
still a very real possibility of modeling errors. The
reachability analysis tool may contain defects; we dis-
covered two in our tool in the course of this work.
The modeled code does not change from application
to application, and the analyzed applications fully ex-
ercised the code model, but to rigorously assert this
code is correct for all possible applications would re-
quire some sort of induction argument. Even if the
source code is correct, defects in the compiler, linker
or loader software could introduce defects into the ex-
ecutable image.

Nevertheless, we estimate that the effort required
for this exercise was roughly comparable to that re-
quired for traditional unit testing, but the results were
more thorough than would have been achieved using
traditional requirements testing. The method must be
used in conjunction with traditional verification tech-

0 _< _<C 90000

Initializing

Starting

Stopped

Computing

Recovering

0 _< _<C 90000

0 _< _<C 90000

0 _< _<R 10000

0 _< _<T 100000

Failed

Un(*)

Un(*)

Un(*)Un(*)

Un(*)
Un(*)

if T = 100000

if T = 100000

T:=0, C:=0 R:=0,Un(C)

T:=0,C:=0,XT:=0

XT:=0,Un(C)

XT:=
0,U

n(
C)

XT:=0,Un(R)

Awaiting_Dispatch
0 _< _<T 100000

_<T 100000assert

_<T 100000assert

Figure 7: Generated Hybrid Automata Model for a Simple Periodic Task

niques such as testing, but it is at least intuitively
reasonably easy to distinguish requirements that will
be verified using hybrid automata from requirements
that must be verified using other techniques.

6 Future Work
Our experience leads us to believe that linear hy-

brid automata are very powerful and well-suited for
this domain. We were able to achieve one of our goals,
the modeling and verification of a piece of real-world
real-time software, with a number of limitations. We
do not believe we have achieved the other goal yet,
modeling and schedulability analysis for complex dis-
tributed systems of real-world size. However, there are
a number of potential future developments that might
reduce the verification limitations and provide useful
schedulability analysis capabilities.
It should be possible to use the set of reachable

regions produced by the analysis tool to automatically
generate tests. This could significantly reduce the cost
and increase the quality of requirements testing (which
might still be required by the powers-that-be). Such
tests could also detect defects that could not be found
by model analysis, such as defects in the compiler,
linker, loader, RTOS or hardware. One of the issues
that must be confronted is the ease of constructing,
running and observing the results of tests; for example,
in theory one might encounter transitions in the model
that occur only when two values are extremely close,
which could be practically impossible to do in a test.
Another issue is that such tests would not take into

account the internal logic of unmodeled modules such
as the RTOS; a systematic method for testing multiple
points within each reachable polyhedron might help
address this.
There are a number of potentially useful improve-

ments in analysis methods and tools. Approximation
and partial order methods might significantly increase
the size of the model that could be analyzed[16, 19,
15, 29]. Preprocessing models to modify numeric pa-
rameters in certain ways can result in much more eas-
ily solved models[29]. It is possible to apply theo-
rem proving methods to linear hybrid automata[21],
and some work has been done on dense-time process
algebras[10, 14]. Decomposition and induction meth-
ods currently being explored for discrete state models
might be extensible to linear hybrid automata. There
are a number of possible ways to visualize and navigate
the reachable region space that would be of practical
assistance during model development and debugging
and during reviews. Concise APIs and support for in-
line modeling could reduce both the modeling effort
and the number of modeling defects.
Changes will inevitably be required to the design,

implementation and verification processes to make
good use of these methods. Much of the benefit of
other formal methods has been due to subsequent
changes in development methods that resulted in more
verifiable and defect-free specifications, designs and
code in the first place. An important and not com-
pletely technical question is how verification processes
might be changed to beneficially use these methods.

Description Discrete Distinct Sparc Ultra-2
States Polyhedra CPU Seconds

one periodic task 7 7 0

one periodic task, enforced execution time limits 7 10 0

one periodic task, enforced execution time limits, one semaphore 8 29 15

one period-enforced aperiodic task 9 18 0

one period-enforced aperiodic task, enforced execution time limits 9 27 2

one period-enforced aperiodic task, enforced execution time limits, one
semaphore

11 124 125

two periodic tasks 36 60 3

two periodic tasks, enforced execution time limits 36 108 24

two periodic tasks, one with period transformed into two pieces, 41 97 10

two periodic tasks, one shared semaphore 48 118 36

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits

41 174 87

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits, recovery limit greater than compute limit

40 334 103

two tasks, one periodic and one period-enforced aperiodic 44 623 115

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits

41 351 170

two tasks, one periodic and one period-enforced aperiodic, enforced ex-
ecution time limits

44 425 184

two tasks, one periodic and one period-enforced aperiodic, one shared
semaphore

70 638 840

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits, one shared semaphore

55 963 5658

Table 1: Modeled Applications

What evidence would be required, for example, to con-
vince a development organization or regulatory au-
thority to replace selected existing verification activ-
ities with modeling and analysis activities, or to add
modeling and analysis to current verification activi-
ties?

References
[1] MetaH User’s Guide, Honeywell Technology Cen-

ter, 3660 Technology Drive, Minneapolis, MN,
www.htc.honeywell.com/metah.

[2] K. Altisen, G. GöBler, A. Pnueli, J. Sifakis, S.
Tripakis and S. Yovine, “A Framework for Sched-
uler Synthesis,” Real-Time Systems Symposium,
December 1999.

[3] Rajeev Alur, Tomás Feder and Thomas A. Hen-
zinger, “The Benefits of Relaxing Punctuality,”
Proceedings of the Tenth Annual ACm Symposium
on Principles of Distributed Computing, Montreal,
Quebec, August 19-21, 1991.

[4] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, “Automatic Symbolic Verification of Embed-
ded Systems,” IEEE Transactions on Software En-
gineering, vol. 22, no. 3, March 1996, pp 181-201.

[5] Pam Binns, “Scheduling Slack in MetaH,” Real-
Time Systems Symposium, work-in-progress ses-
sion, December 1996.

[6] Pam Binns,
“Incremental Rate Monotonic Scheduling for Im-
proved Control System Performance,” Real-Time
Applications Symposium, 1997.

[7] Pam Binns and Steve Vestal, “Message Passing
in MetaH using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priority Scheduling,”
submitted Real-Time Applications Symposium.

[8] Johan Bengtsson and Fredrik Larsson, UPPAAL,
A Tool for Automatic Verification of Real-Time
Systems, DoCS 96/97, Department of Computer
Science, Uppsala University, January 15, 1996.

[9] B. A. Brandin and W. M. Wonham, “Supervisory
Control of Timed Discrete-Event Systems,” IEEE
Transitions on Automatic Control, v39, n2, Febru-
ary 1994.

[10] Patrice Brémond-Grégoire and Insup Lee, “A
Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities,” Univer-
sity of Pennsylvania Department of Computer Sci-
ence Technical Report MS-CIS-95-08, June 1996.

[11] S. Campos, E. Clarke, W. Marrero, M. Minea and
H. Hiraishi, “Computing Quantitative Character-
istics of Finite-State Real-Time Systems,” Real-
Time Systems Symposium, December 1994.

[12] David L. Dill, “Timing Assumptions and Verifica-
tion of Finite-State Concurrent Systems,” Interna-
tional Workshop on Automatic Verification Meth-
ods for Finite State Systems, Grenoble, France,
June 12-14, 1989, also in Lecture Notes in Com-
puter Science 407, J. Sifakis (Ed.), Springer-
Verlag, pp 197-212.

[13] Andre N. Fredette and Rance Cleaveland,
“RSTL: A Language for Real-Time Schedulability
Analysis,” Proceedings of the Real-Time Systems
Symposium, December 1993.

[14] Andre N. Fredette, A Generalized Approach to
the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State Univer-
sity, March 1993.

[15] Nicolas Halbwachs, Pascal Raymond and Yann-
Eric Proy, “Verification of Linear Hybrid Systems
by Means of Convex Approximations,” Workshop
on Verification and Control of Hybrid Systems,
Piscataway, NJ, October 1995.

[16] Nicolas Halbwachs, Yann-Erik Proy and Patrick
Roumanoff, “Verification of Real-Time Systems
using Linear Relation Analysis,” Formal Methods
in System Design, 11(2):157-185, August 1997.

[17] Thomas A. Henzinger, Peter W. Kopke, Anuj
Puri and Pravin Varaiya, “What’s Decideable
About Hybrid Automata?” Proceedings of the 27th
Annual ACM Symposium on Theory of Comput-
ing, 1995.

[18] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, “HyTech: The Next Generation,” Real-
Time Systems Symposium, December 1995.

[19] Thomas A. Henzinger and Pei-Hsin Ho, “A Note
On Abstract Interpretation Strategies for Hybrid
Automata,” Hybrid Systems II, also Lecture Notes
in Computer Science 999, Springer-Verlag, 1995.

[20] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, “A User Guide to HyTech,” University
of California at Berkeley,
www.eecs.berkeley.edu/~tah/HyTech

[21] Thomas A. Henzinger and Vlad Rusu, “Reach-
ability Verification for Hybrid Automata,” Pro-
ceedings of the First International Workshop on
Hybrid Systems: Computation and Control, also
Lecture Notes in Computer 1386, Springer-Verlag,
1998.

[22] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine,
“Integration Graphs: A Class of Decideable Hy-
brid Systems,” in R. L. Grossman, A. Nerode, A.
P. Ravn and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, Springer-
Verlag, 1993.

[23] Insup Lee, Patrice Brémond-Grégoire and
Richard Gerber, “A Process Algebraic Approach
to the Specification and Analysis of Resource-
Bound Real-Time Systems,” Department of Com-
puter Science, University of Pennsylvania.

[24] Bruce Lewis, “Software Portability Gains Real-
ized with MetaH, an Avionics Architecture De-
scription Language,” 18th Digital Avionics Sys-
tems Conference, St. Louis, MO, October 24-29,
1999.

[25] Anum Puri and Pravin Varaiya, “Decidability of
Hybrid Systems with Rectangular Differential In-
clusions,” Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, CA.

[26] Peter J. G. Ramadge and W. Murray Wonham,
“The Control of Discrete Event Systems,” Proceed-
ings of the IEEE, v77, n1, January 1989.

[27] Steve Vestal, “An Architectural Approach for In-
tegrating Real-Time Systems,” Workshop on Lan-
guages, Compilers and Tools for Real-Time Sys-
tems, June 1997.

[28] Steve Vestal, “Linear Hybrid Automata Mod-
els of Real-Time Scheduling and Allocation in
Distributed Heterogeneous Systems,” Honeywell
Technology Center, 3660 Technology Drive, Min-
neapolis, MN 55418, 1999.

[29] Steve Vestal, “A New Linear Hybrid Automata
Reachability Procedure,” Honeywell Technology
Center, 3660 Technology Drive, Minneapolis, MN
55418, 1999.

[30] Steve Vestal, “Formal Verification of the MetaH
Executive Using Linear Hybrid Automata,” Hon-
eywell Technology Center, Minneapolis, MN
55418, December 1999.

[31] Jin Yang, Aloysius K. Mok and Farn Wang,
“Symbolic Model Checking for Event-Driven Real-
Time Systems,” ACM Transactions on Program-
ming Languages and Systems, v19, n2, March
1997.

